2.1 Maximum likelihood

We want the mazimum likelihood estimates of the parameters — those parame-
ter values that make the observed data most likely to have happened. Since the
observations are independent, the joint likelihood of the whole data set is the
product of the likelihoods of each individual observation. Since the observations
are identically distributed, we can write the likelihood as a product of similar
terms. For mathematical convenience, we almost always maximize the loga-
rithm of the likelihood (log-likelihood) instead of the likelihood itself. Since the
logarithm is a monotonically increasing function, the maximum log-likelihood
estimate is the same as the maximum likelihood estimate. Actually, it is con-
ventional to minimize the negative log-likelihood rather than maximizing the
log-likelihood. For continuous probability distributions, we compute the proba-
bility density of observing the data rather than the probability itself. Since we
are interested in relative (log)likelihoods, not the absolute probability of observ-
ing the data, we can ignore the distinction between the density (P(z)) and the
probability (which includes a term for the measurement precision: P(z) dx).

2.1.1 Tadpole predation data: binomial likelihood

For a single observation from the binomial distribution (e.g. the number of small
tadpoles killed by predators in a single tank at a density of 10), the likelihood
that k out of N individuals are eaten as a function of the per capita predation
probability p is Prob(klp, N) = (})p*(1 — p)¥~*. If we have n observations,
each with the same total number of tadpoles N, and the number of tadpoles
killed in the ith observation is &;, then the likelihood is
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The log-likelihood is

L=i§: (log (g) +ki10gp+(N—ki)log(1—p)>. 2)

In R, this would be sum(dbinom(k,size=N,prob=p,log=TRUE)).



Analytical approach In this simple case, we can actually solve the problem
analytically, by differentiating with respect to p and setting the derivative to
zero. Let p be the maximum likelihood estimate, the value of p that satisfies
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Since the derivative of a sum equals the sum of the derivatives,
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The term log( ) is a constant with respect to p, so its derivative is zero and
the first term dlsappears Since k; and (N — k;) are constant factors they come
out of the derivatives and the equation becomes
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The derivative of log p is 1/p, so the chain rule says the derivative of log(1—p) is
d(log(1 —p))/d(1—p)-d(1—p)/dp=—1/(1 —p). We will denote the particular
value of p we’re looking for as p. So
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So the maximum-likelihood estimate, p, is just the overall fraction of tadpoles
eaten, lumping all the observations together: a total of > k; tadpoles were eaten
out of a total of nIV tadpoles exposed in all of the observations.

We seem to have gone to a lot of effort to prove the obvious, that the best
estimate of the per capita predation probability is the observed frequency of
predation. Other simple distributions like the Poisson behave similarly. If we



differentiate the likelihood, or the log-likelihood, and solve for the maximum
likelihood estimate, we get a sensible answer. For the Poisson, the estimate of
the rate parameter ) is equal to the mean number of counts observed per sample.
For the normal distribution, with two parameters ; and o2, we have to compute
the partial derivatives of the likelihood with respect to both parameters and
solve the two equations simultaneously (OL/0u = OL/dc* = 0). The answer
is again obvious in hindsight: i = Z (the estimate of the mean is the observed
mean) and 02 = Y (z; — 7)2/n (the estimate of the variance is the variance of
the sample*.).

For some simple distributions like the negative binomial, and for all the
complex problems we will be dealing with hereafter, there is no easy analytical
solution and we have to find the maximum likelihood estimates of the parameters
numerically. The point of the algebra here is just to convince you that maximum
likelihood estimation makes sense in simple cases.

Numerics This chapter presents the basic process of computing and maximiz-
ing likelihoods (or minimizing negative log-likelihoods in R; Chapter 77 will go
into much more detail on the technical details. First, you need to define a func-
tion that calculates the negative log-likelihood for a particular set of parameters.
Here’s the R code for a binomial negative log-likelihood function:

> binomNLL1 = function(p, k, N) {
+ -sum(dbinom(k, prob = p, size = N, log = TRUE))
+ }

The dbinom function calculates the binomial likelihood for a specified data set
(vector of number of successes) k, probability p, and number of trials N; the
log=TRUE option gives the log-probability instead of the probability (more ac-
curately than taking the log of the product of the probabilities); —~sum adds the
log-likelihoods and changes the sign to get an overall negative log-likelihood for
the data set.

Load the data and extract the subset we plan to work with:

> data(ReedfrogPred)

> x = subset (ReedfrogPred, pred == "pred" & density ==
+ 10 & size == "small")

> k = x$surv

We can use the optim function to numerically optimize (by default, min-
imizing rather than maximizing) this function. You need to give optim the
objective function — the function you want to minimize (binomNLL1 in this
case) — and a vector of starting parameters. You can also give it other in-
formation, such as a data set, to be passed on to the objective function. The
starting parameters don’t have to be very accurate (if we had accurate estimates
already we wouldn’t need optim), but they do have to be reasonable. That’s

*Maximum likelihood estimation actually gives a biased estimate of the variance, dividing
the sum of squares Y (x; — Z)2 by n instead of n — 1.
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Figure 1: Likelihood curves for a simple distribution: binomial-distributed pre-
dation.

why we spent so much time in Chapters 7?7 and ?7? on eyeballing curves and the
method of moments.

> 01 = optim(fn = binomNLL1, par = c(p = 0.5), N = 10,
+ k = k, method = "BFGS")

fn is the argument that specifies the objective function and par specifies
the vector of starting parameters. Using c(p=0.5) names the parameter p —
probably not necessary here but very useful for keeping track when you start
fitting models with more parameters. The rest of the command specifies other
parameters and data and optimization details; Chapter 7?7 explains why you
should use method="BFGS" for a single-parameter fit.

Check the estimated parameter value and the maximum likelihood — we
need to change sign and exponentiate the minimum negative log-likelihood that
optim returns to get the maximum log-likelihood:

> 01$par

p
0.7499998

> exp(-01$value)

[1] 0.0005150149



