
CHAPTER 2 ST 732, M. DAVIDIAN

2 Review of matrix algebra

2.1 Introduction

Before we begin our discussion of the statistical models and methods, we review elements of matrix

algebra that will be quite useful in streamlining our presentation and representing data. Here, we will

note some basic results and operations. Further results and definitions will be discussed as we need

them throughout the course. Many useful facts here are stated systematically in this chapter; thus, this

chapter will serve as a reference for later developments using matrix notation.

2.2 Matrix notation

MATRIX: A rectangular array of numbers, e.g.

A =




3 5 7 8

1 2 3 7




As is standard, we will use boldface capital letters to denote an entire matrix.

DIMENSION: A matrix with r rows and c columns is said to be of dimension (r × c).

It is customary to refer generically to the elements of a matrix by using 2 subscripts, e.g.

A =




a11 a12 a13 a14

a21 a22 a23 a24




a11 = 3, a12 = 5, etc. In general, for a matrix with r rows and c columns, A, the element of A in the

ith row and the jth column is denoted as aij , where i = 1, . . . , r and j = 1, . . . , c.

VECTOR: A column vector is a matrix with only one column, e.g.

a =




2

0

3

−2
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A row vector is matrix with only one row, e.g.

b =

(
1, 3, −5

)

It is worth noting some special cases of matrices.

SQUARE MATRIX: A matrix with r = c, that is, with the same number of rows and columns is called

a square matrix. If a matrix A is square, the elements aii are said to lie on the (principal) diagonal

of A. For example,

A =




4 0 7

9 −1 3

−8 4 5




.

SYMMETRIC MATRIX: A square matrix A is called symmetric if aij = aji for all values of i and j.

The term symmetric refers to the fact that such a matrix “reflects” across its diagonal, e.g.

A =




3 5 7

5 1 4

7 4 8




Symmetric matrices turn out to be quite important in formulating statistical models for all types of

data!

IDENTITY MATRIX: An important special case of a square, symmetric matrix is the identity matrix

– a square matrix with 1’s on diagonal, 0’s elsewhere, e.g.

I =




1 0 0

0 1 0

0 0 1




As we will see shortly, the identity matrix functions the same way as “1” does in the real number system.

TRANSPOSE: The transpose of any (r × c) A matrix is the (c × r) matrix denoted as A′ such that

aij is replaced by aji everywhere. That is, the transpose of A is the matrix found by “flipping” the

matrix around, e.g.

A =




3 5 7 8

1 2 3 7


 , A′ =




3 1

5 2

7 3

8 7
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A fundamental property of a symmetric matrix is that the matrix and its transpose are the same; i.e.,

if A is symmetric then A = A′. (Try it on the symmetric matrix above.)

2.3 Matrix operations

The world of matrices can be thought of as an extension of the world of real (scalar) numbers. Just as

we add, subtract, multiply, and divide real numbers, we can do the same in with matrices. It turns out

that these operations make the expression of complicated calculations easy to talk about and express,

hiding all the details!

MATRIX ADDITION AND SUBTRACTION: Adding or subtracting two matrices are operations that

are defined element-by-element. That is, to add to matrices, add their corresponding elements, e.g.

A =




5 0

−3 2


 , B =




6 4

2 −1




A + B =




11 4

−1 1


 , A − B =




−1 −4

−5 3




Note that these operations only make sense if the two matrices have the same dimension – the

operations are not defined otherwise.

MULTIPLICATION BY A CONSTANT: The effect of multiplying a matrix A of any dimension by a

real number (scalar) b, say, is to multiply each element in A by b. This is easy to see by considering

that this is just equivalent to adding A to itself b times. E.g.

3




5 −2

6 4


 =




15 −6

18 12


 .

GENERAL FACTS:

• A + B = B + A, b(A + B) = bA + bB

• (A + B)′ = A′ + B′, (bA)′ = bA′
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MATRIX MULTIPLICATION: This operation is a bit tricky, but as we will see in a moment, it proves

most powerful for expressing a whole series of calculations in a very simple way.

• Order matters

• Number of columns of first matrix must = Number of rows of second matrix, e.g.

A =




1 3 5

−2 −1 2


 B =




2 3

0 5

1 −2




A B =




7 8

−2 −15




E.g. (1)(2) + (3)(0) + (5)(1) = 7 for the (1, 1) element.

• Two matrices satisfying these requirements are said to conform to multiplication.

• Formally, if A is (r × c) and B is (c × q), then AB is a (r × q) matrix with (i, j)th element

c∑

k=1

aikbkj .

Here, we say that A is postmultiplied by B and, equivalently, that B is premultiplied by A.

EXAMPLE: Consider a simple linear regression model: suppose that we have n pairs (x1, Y1), . . . , (xn, Yn),

and we believe that, except for a random deviation, the relationship between the covariate x and the

response Y follows a straight line. That is, for j = 1, . . . , n, we have

Yj = β0 + β1xj + εj ,

where εj is a random deviation representing the amount by which the actual observed response Yj

deviates from the exact straight line relationship. Defining

X =




1 x1

1 x2

...
...

1 xn




, Y =




Y1

Y2

...

Yn




, ε =




ε1

ε2
...

εn




, β =




β0

β1


 ,

we may express the model succinctly as

Y = Xβ + ε. (2.1)
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SPECIAL CASE: Multiplying vectors. With a row vector premultiplying a column vector, the result is

a scalar (remember, a (1 × 1) matrix is just a real number!), e.g.

a b =

(
1, 3, −5, 1

)




2

0

3

−2




= −15

i.e. (1)(2) + (3)(0) + (−5)(3) + (1)(−2) = −15

With a column vector premultiplying a row vector, the result is a matrix. e.g.

bc =




2

0

3

−2




(
3 −1 2

)
=




6 −2 4

0 0 0

9 −3 6

−6 2 −4




MULTIPLICATION BY AN IDENTITY MATRIX: Multiplying any matrix by an identity matrix of

appropriate dimension gives back the same matrix, e.g.

I A =




1 0

0 1







1 3 5

−2 −1 2


 = A

GENERAL FACTS:

• A(B + C) = AB + AC, (A + B)C = AC + BC

• For any matrix A, A′A will be a square matrix.

• The transpose of a matrix product – if A and B conform to multiplication, then the transpose

of their product

(AB)′ = B′A′.

These latter results may be proved generically, but you may convince yourself by working them out for

the matrices A and B given above.
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LINEAR DEPENDENCE: This characteristic of a matrix is extremely important in that it describes

the nature and extent of the information contained in the matrix. Consider the matrix

A =




1 1 1

3 1 5

2 3 1




.

Refer to the columns as c1, c2, c3. Note that

2c1 + −c2 + −c3 = 0,

where 0 is a column of zeros (in this case, a (3 × 1) vector). Because the 3 columns of A may be

combined in a linear function to yield a vector of nothing but zeros, clearly, there is some kind of

relationship, or dependence, among the information in the columns. Put another way, it seems as

though there is some duplication of information in the columns.

In general, we say that k columns c1, c2, . . . , ck of a matrix are linearly dependent if there exists a

set of scalar values λ1, . . . , λk such that

λ1c1 + · · · + λkck = 0, (2.2)

and at least one of the λj ’s is not equal to 0.

Linear dependence implies that each column vector is a combination of the others, e.g.,

ck = −(λ1c1 + · · · + λk−1ck−1)/λk.

The implication is that all of the “information” in the matrix is contained in a subset of the columns

– if we know any (k − 1) columns, we know them all. This formalizes our notion of “duplication” of

information.

If, on the other hand, the only set of λj values we can come up with to satisfy (2.2) is a set of all zeros,

then it must be that there is no relationship among the columns, e.g. they are “independent” in the

sense of containing no overlap of information. The formal term is linearly independent.
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RANK OF A MATRIX: The rank of a matrix is the maximum number of linearly independent columns

that may be selected from the columns of the matrix. It is sort of a measure of the extent of “duplication

of information” in the matrix. The rank of a matrix may be equivalently defined as the number of linearly

independent rows (by turning the matrix on its side). The rank determined either way is the same.

Thus, the largest that the rank of a matrix can be is the minimum of r and c. The smallest rank may

be is 1, in which case there is one column such that all other columns are direct multiples.

In the above, the rank of the matrix A is 2. To see this, eliminate one of the columns (we have already

seen that the three columns are linearly dependent, so we can get the third from the other two). Now

try to find a new linear combination of the remaining columns that has some λj not equal to 0. If this

can not be done – stop and declare the rank to be the number of remaining columns.

FULL RANK: A matrix is said to be of full rank if its rank is equal to the minimum of r and c.

FACT: If X is a (r × c) matrix with rank k, then X ′X also has rank k. Note, of course, that X ′X is

a square matrix of dimension (c × c). If k = c, then X ′X is of full rank.

INVERSE OF A MATRIX: This is related to the matrix version of “division” – the inverse of a matrix

may be thought of in way similar to a “reciprocal” in the world of real numbers.

• The notion of an inverse is only defined for square matrices, for reasons that will be clear below.

• The inverse of the square matrix A is denoted by A−1 and is the square matrix satisfying

A A−1 = I = A−1 A

where I is an identity matrix of the same dimension.

• We sometimes write Ik when I is (k × k) when it is important to note explicitly the dimension.

Thus, the inverse of a matrix is like the analog of the reciprocal for scalars. Recall that if b is a scalar

and b = 0, then the reciprocal of b, 1/b does not exist – it is not defined in this case. Similarly, there

are matrices that “act like zero” for which no inverse is defined. Consequently, inverse is only defined

when it exists.

Computing the inverse of a matrix is best done on a computer, where the intricate formulæ for matrices

of general dimension are usually built in to software packages. Only in simple cases is an analytic

expression obtained easily (see the next page).
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A technical condition that an inverse of the matrix A exist is that the columns of A are linearly

independent. This is related to the following.

DETERMINANT: When is a matrix “like zero?” The determinant of a square matrix is a scalar

number that in some sense summarizes how “zero-like” a matrix is.

The determinant of a (2 × 2) matrix is defined as follows. Let

A =




a b

c d




Then the determinant of A is given by

|A| = ad − bc.

The notation |A| means “determinant of;” this may also be written as det(A). Determinant is also

defined for larger matrices, although the calculations become tedious (but are usually part of any decent

software package).

The inverse of a matrix is related to the determinant. In the special case of a (2 × 2) matrix like A

above, it may be shown that

A−1 =
1

ad − bc




d −b

−c a


 .

Inverse for matrices of larger dimension is also defined in terms of the determinant, but the expressions

are complicated.

GENERAL FACTS:

• If a square matrix is not of full rank, then it will have determinant equal to 0. For example, for

the (2 × 2) matrix above, suppose that the columns are linearly dependent with a = 2b and

c = 2d. Then note that

|A| = ad − bc = 2bd − 2bd = 0.

• Thus, note that if a matrix is not of full rank, its inverse does not exist. In the case of a (2 × 2)

matrix, note that the inverse formula requires division by (ad− bc), which would be equal to zero.
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EXAMPLE:

A =




5 0

−3 2


 , |A| = (5)(2) − (0)(−3) = 10

A−1 =
1

10




2 0

3 5


 =




1/5 0

3/10 1/2




Verify that A A−1 = A−1A = I.

ADDITIONAL FACTS: Let A and B be square matrices of the same dimension whose inverses exist.

• (AB)−1 = B−1A−1, (A−1)′ = (A′)−1.

• If A is a diagonal matrix, that is, a matrix that has non-zero elements only on its diagonal,

with 0’s everywhere else, then its inverse is nothing more than a diagonal matrix whose diagonal

elements are the reciprocals of the original diagonal elements, e.g., if

A =




5 0 0

0 2 0

0 0 −4




, A−1 =




1/5 0 0

0 1/2 0

0 0 −1/4




.

Note that an identity matrix is just a diagonal matrix whose inverse is itself, just as 1/1=1.

• |A| = |A′|

• If each element of a row or column of A is zero, then |A| = 0.

• If A has any rows or columns identical, then |A| = 0.

• |A| = 1/|A−1|

• |AB| = |A||B|

• If b is a scalar, then |bA| = bk|A|, where k is the dimension of A.

• (A + B)−1 = A−1 − A−1(A−1 + B−1)−1A−1

• If A is a diagonal matrix, then |A| is equal to the product of the diagonal elements, i.e.

A =




a11 0 · · · 0

0 a22 · · · 0
...

...
...

...

0 0 · · · ann




⇒ |A| = a11a22 · · · ann.
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USE OF INVERSE – SOLVING SIMULTANEOUS EQUATIONS: Suppose we have a set of simulta-

neous equations with unknown values x, y, and z, e.g.

x − y + z = 2

2x + y = 7

3x + y + z = -5.

We may write this system succinctly in matrix notation as Aa = b, where

A =




1 −1 1

2 1 0

3 1 1




, a =




x

y

z




, b =




2

7

−5




.

Then, provided A−1 exists, we may write the solution as

a = A−1b.

Note that if b = 0, then the above shows that if A has an inverse, then it must be that a = 0. More

formally, a square matrix A is said to be nonsingular if Aa = 0 implies a = 0. Otherwise, the matrix

is said to be singular.

Equivalently, a square matrix is nonsingular if it is of full rank.

For a square matrix A, the following are equivalent:

• A is nonsingular

• |A| 6= 0

• A−1 exists

We will see that matrix notation is incredibly useful for summarizing models and methods for longitudi-

nal data. As is true more generally in statistics, the concepts of rank and singularity are very important.

Matrices in statistical models that are singular generally reflect a problem – most often, they reflect

that there is not sufficient information available to learn about certain aspects of the model. We will

see this in action later in the course.
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EXAMPLE: Returning to the matrix representation of the simple linear regression model, it is possible

to use these operations to streamline the statement of how to calculate the least squares estimators of

β0 and β1. Recall that the least squares estimators β̂0 and β̂1 for the intercept and slope minimize the

sum of squared deviations
n∑

j=1

(Yj − β0 − xjβ1)
2

and are given by

β̂1 =
SXY

SXX
, β̂0 = Y − β̂1x,

where

SXY =
n∑

j=1

(Yj − Y )(xj − x) =
n∑

j=1

xjYj −
(
∑n

j=1 xj)(
∑n

j=1 Yj)

n
, Y = n−1

n∑

j=1

Yj , x = n−1
n∑

j=1

xj

SXX =
n∑

j=1

(xj − x)2 =
n∑

j=1

x2
j −

(
∑n

j=1 xj)
2

n
, SY Y =

n∑

j=1

(Yj − Y )2 =
n∑

j=1

Y 2
j − (

∑n
j=1 Yj)

2

n
,

We may summarize these calculations succinctly in matrix notation: the sum of squared deviations may

be written as

(Y − Xβ)′(Y − Xβ),

and, letting β̂ = (β̂0, β̂1)
′, the least squares estimator for β may be written

β̂ = (X ′X)−1X ′Y .

Verify that, with X and Y defined as in (2.1), this matrix equation gives the usual estimators above.

CONVENTION: Here, we have referred to β̂0 and β̂1 as estimators, and have written them in terms of

the random variables Yj . The term estimator refers to the generic function of random variables one

would use to learn about parameters like β0 or β1. The term estimate refers to the actual numerical

values obtained by applying the estimator to data; e.g., y1, . . . , yn in this case.

We will see later that matrix notation is more generally useful for summarizing models for longitudinal

data and the calculations required to fit them; the simple linear regression model above is a simple

example.

TRACE OF A MATRIX: Defining this quantity allows a streamlined representation of many complex

calculations. If A is a (k × k) square matrix, then define the trace of A, tr(A), to be the sum of the

diagonal elements; i.e.

tr(A) =
k∑

i=1

aii.
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If A and B are both square with dimension k, then

• tr(A) = tr(A′), tr(bA) = btr(A)

• tr(A + B) = tr(A) + tr(B), tr(AB) = tr(BA)

QUADRATIC FORMS: The following form arises quite often. Suppose A is a square, symmetric

matrix of dimension k, and x is a (k × 1) column vector. Then

x′Ax

is called a quadratic form. It may be shown that

x′Ax =
k∑

i=1

k∑

j=1

aijxixj .

Note that this sum will involve both squared terms x2
i and cross-product terms xixj , which forms

the basis for the name quadratic.

A quadratic form thus takes on scalar values. Depending on the value, the quadratic form and the

matrix A may be classified. With x 6= 0,

• If x′Ax ≥ 0, the quadratic form and the matrix A are said to be nonnegative definite

• If x′Ax > 0, the quadratic form and the matrix A are said to be positive definite. If A is

positive definite, then it is symmetric and nonsingular (so its inverse exists).

EXAMPLE: The sum of squared deviations that is minimized to obtain the least squares estimators in

regression is a quadratic form with A = I,

(Y − Xβ)′(Y − Xβ) = (Y − Xβ)′I(Y − Xβ).

Note that this is strictly greater than 0 by definition, because it equals

n∑

j=1

(Yj − β0 − xjβ1)
2,

which is a sum of squared quantities, all of which must be positive (assuming that not all deviations

are identically equal to zero, in which case the problem is rather nonsensical).

FACT: x′Ax = tr(Axx′); this may be verified by simply multiplying out each side. (Try it for the sum

of squared deviations above.)
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