
Core Concepts

Animate ggplots with gganimate : : CHEAT SHEET

Main Function Groups
● transition_*(): What variable controls

change and how?
● view_*(): Should the axes change with the

data?
● enter/exit_*(): How does new data get

added the plot? How does old data leave?
● shadow_*(): Should previous data be

“remembered” and shown with current data?
● ease_aes(): How do you want to handle the

pace of change between transition values?

gganimate builds on ggplot2’s grammar of
graphics to provide functions for animation. You
add them to plots created with ggplot() the
same way you add a geom.

Note: you only need a transition_*() or
view_*() to make an animation. The other
function groups enable you to add features or alter
gganimate’s default settings .

transition_states()
a + transition_states(color, transition_length = 3, state_length = 1)

… and spending 3 times as long going to the next cut as we do pausing there.

We’re spending
twice as long moving
between views as
staying at them...

transition_time()
b + transition_time(year, range = c(2002L,2006L))

...from 2002 to 2006 (range is optional; default is the whole time frame). Unlike
transition_states(), transition_time() treats the data as continuous and so
the transition length is based on the actual values. Using 2002L instead of 2002
because the underlying data is an integer.

We’re cycling through
each year of the data...

transition_reveal()
c + transition_reveal(date)

Starting Plots
library(tidyverse)
library(gganimate)

a <- ggplot(diamonds,
 aes(carat, price)) +
 geom_point()

b <- ggplot(txhousing,
 aes(month, sales)) +
 geom_col()

c <- ggplot(economics,
 aes(date, psavert)) +
 geom_line()

RStudio® is a trademark of RStudio, Inc. • CC by Karl Hailperin • khailper@gmail.com • Learn more at www.gganimate.com • package version 1.0.3 • Updated: 2019-05

We’re adding each date of the data
on top of ‘old’ data

transition_filters()
a + transition_filter(transition_length = 3,
 filter_length = 1,
 cut == "Ideal",
 Deep = depth >= 60)

transition_length and filter_length work the same as
transition/state_length() in transition_states()...

… but now we’re cycling between these two filtering conditions. Names are
optional, but can be useful (see “Label variables” on next page).

view_follow()
anim_a +
 view_follow(fixed_x = TRUE,
 fixed_y = c(2500, NA))

x-axis shows full range, y shows
[2500, as much is needed for that frame].
Default is for both axis to vary as needed.

view_step()
anim_a +
 view_step(pause_length = 2,
 step_length = 1,
 nstep = 7)

… and we’re cycling between seven views.
Seven is the number of steps in the transition,
so the view is changing when the points are
static, and visa versa. Views are determined
by what data is in the current frame.

We’re cycling between
values of color, ...

view_zoom()
view_zoom() works similarly to
view_step(), except it changes the view by
zooming and panning.

Note: both view_step() and view_zoom() have
view_*_manual() versions for setting views
directly instead of inferring it from frame data.

anim_a <- a + transition_states(color, transition_length = 3, state_length = 1)

Other transitions
● transition_manual(): Similar to transition_states(), but without intermediate states.
● transition_layers(): Add layers (geoms) one at time.
● transition_components(): Transition elements independently from each other.
● transition_events(): Each element’s duration can be controlled individually.

Baseline Animation

view_*()transition_*()

gganimate

http://www.gganimate.com/

ease_aes()

gganimate’s transition_*() functions create label variables you can pass to (sub)titles and other labels
with the glue package. For example, transition_states() has next_state, which is the name of the
state the animation is transitioning towards. Label variables are different between transitions, and details
are included in the documentation of each.

anim_a + labs(subtitle = “Moving to {next_state}”)

Note: enter/exit_*() functions can be combined so that you can have old data fade away and
shrink to nothing by adding exit_fade() and exit_shrink() to the plot.

enter/exit_fly()
anim_a + enter_fly(x_loc = 0,
 y_loc = 0)

When new points need to be added,
they will fly in from (0, 0).

shadow_*()
shadow_wake()
anim_a + shadow_wake(wake_length = 0.05)

Points have a wake of points with the data
from the last 5% of frames.

shadow_trail()
anim_a + shadow_trail(distance = 0.05)

Animation will keep the points from 5% of
the frames, spaced as evenly as possible.

enter/exit_drift()
anim_a + exit_drift(x_mod = 3, y_mod = -2)

When extra points need to be removed,
They drift 3 units to the right and down
2 units before disappearing.

shadow_mark()
anim_a + shadow_mark(color = "red")

Animation will keep past states plotted in red
(but not the intermediate frames).

Label variable Description Transitions

transitioning TRUE if the current frame is an
transition frame, FALSE otherwise

states, layers, filter

previous_state/layer Last shown state/layer states, layers

next_state/layer State/layer that will been shown next states, layers

closest_state/layer State/layer that current frame is closest to (if
between states/layers, either next or closest).

states, layers

previous/closest/
next_filter/
expression

Similar to their state/layer analogs.
*_filter variables return the name of the
filter, *_expression variables return
the condition.

filter

frame_time Time of current frame time, components, events

frame_along Current frame’s value for the dimension we’re
transitioning over

reveal

nlayers Number of layers (total, not just currently
shown)

layer

Saving animations
animation_to_save <- anim_a + exit_shrink()
anim_save("first_saved_animation.gif", animation = animation_to_save)

Since the animation argument uses your last rendered animation by default, this also works:
anim_a + exit_shrink()
anim_save("second_saved_animation.gif")

anim_save() uses gifski to render the animation as a .gif file by default. You can use the renderer
argument for other output types including video files (av_renderer() or ffmeg_renderer()) or
spritesheets (sprite_renderer()):
requires you to have the av package installed
anim_save("third_saved_animation.mp4",
 renderer = av_renderer())

Label variables

ease_aes() allows you to set an easing function to control the rate of change between transition
states. See ?ease_aes for the full list.

Compare:
anim_a
anim_a + ease_aes(“cubic-in") # Change easing of all aesthetics
anim_a + ease_aes(x = “elastic-in") # Only change `x` (others remain “linear”)

We’re using the next_state label variable
to tell the viewer where we’re going.

enter/exit_*()

enter/exit_recolour() (or enter/exit_recolor())
anim_a + enter_recolour(color = "red")

When new points need to be added,
they start as red before transitioning
to their correct color.

enter_grow()/exit_shrink()
anim_a + exit_shrink()

When extra points need to be removed, they will shrink in
size before disappearing.

Every enter_*() function has a corresponding exit_*() function, and visa versa.

enter/exit_fade()
anim_a + enter_fade()

When new points need to be added, they will start
transparent and become opaque.

gganimateAnimate ggplots with gganimate : : CHEAT SHEET

RStudio® is a trademark of RStudio, Inc. • CC by Karl Hailperin • khailper@gmail.com • Learn more at www.gganimate.com • package version 1.0.3 • Updated: 2019-05

http://www.gganimate.com/

